Skip to main content

Bugatti Makes First 3D Printed Titanium Brake Calipers

One of the problems with very strong materials is that they’re hard to work with. Say, for instance, that you wanted to make a brake caliper out of titanium. Until now, that’s been nearly impossible, because milling all of the little channels from a titanium block has been impossible.

Now, though, Bugatti has cracked it. Not literally, of course. Rather than taking a block of titanium or forging it, the French fastest-car-in-the-world makers decided to just 3D print it.

The result is a caliper that weighs just 2.9 kg (6.4 lbs). That’s not exactly nothing, but when you consider first that the calipers (eight-pistons up front and six-pistons out back) are the biggest currently available on any production car, and second that the calipers they’re meant to replace weigh 4.9 kg (10.8 lbs) even though they’re made of aluminum (not exactly a weighty material), the achievement becomes more impressive.

And the result is an extremely strong caliper. The exact brand of titanium used here (Ti6AI4V, in case it helps) is mainly used on the underside of airplane wings and in rocket engines.

As a result, the caliper could support a weight 125 kg (275 lbs) applied to an area just 1 mm squared. So, if for some reason you had a 275 lb drill bit that really had to be stored vertically, look for a Bugatti caliper. Or a rocket engine? Probably best not to, though. NORAD is on pretty high alert these days.

“It was a very moving moment for the team when we held our first titanium brake caliper from the 3-D printer in our hands,” says Frank Götzke, Head of New Technologies in the Technical Development Department of Bugatti. “In terms of volume, this is the largest functional component produced from titanium by additive manufacturing methods. Everyone who looks at the part is surprised at how light it is – despite its large size. Technically, this is an extremely impressive brake caliper, and it also looks great.”

What’s even more surprising is that development of the part didn’t even take very long. From the time someone thought “hmm…” to the time they had a 3D printed caliper in their hands it only took about three months.

Why didn’t this happen sooner? Well, that’s because it’s an extremely time-consuming process. Printing a titanium brake caliper takes about 45 hours, which no one but Bugatti and a select few others have time to wait for.

The process, according to Bugatti, goes like this:

It takes a total of 45 hours to print a brake caliper. During this time, titanium powder is deposited layer by layer. With each layer, the four lasers melt the titanium powder into the shape defined for the brake caliper. The material cools immediately and the brake caliper take shape. The total number of layers required is 2,213. Following the completion of the final layer, the remaining titanium powder which had not melted is removed from the chamber, cleaned and preserved for reuse in a closed loop. What remains in the chamber is a brake caliper complete with supporting structure which maintains its shape until it has received stabilizing heat treatment and reached its final strength.

Heat treatment is carried out in a furnace where the brake caliper is exposed to an initial temperature of 700°C, falling to 100°C in the course of the process, in order to eliminate residual stress and to ensure dimensional stability. Finally, the supporting structures are removed and the component is separated from the tray. In the next production stage, the surface is smoothed in a combined mechanical, physical and chemical process which drastically improves its fatigue strength, i.e. the long-term durability of the component in later vehicle operation. Finally, the contours of functional surfaces, such as the piston contact surfaces or threads, are machined in a five-axis milling machine which takes another 11 hours to complete its work.

The result is a delicately shaped component with wall thicknesses between a minimum of only one millimeter and a maximum of four millimeters.

And since the actual printing had to be done at Laser Zentrum Nord, which mainly works with the aerospace industry, the process likely isn’t cheap either.

Bugatti argues, though—and it isn’t alone—that 3D printed objects are the future of the automotive industry.

“In 3-D printing development, Bugatti is the leader in the Volkswagen group,” Götzke emphasizes. “Everyone can and should benefit from our projects. This is also part of Bugatti’s role as the Group laboratory for high-tech applications.”

For now, though, very intricate, very strong components may help to lighten supercars, the way carbon fiber did for larger parts.

These brakes still aren’t actually on a car. Testing will take place some time in the first half of the year, after which production times will shorten. 

The post Bugatti Makes First 3D Printed Titanium Brake Calipers appeared first on VWVortex.



from VWVortex http://ift.tt/2n1kMAK
via IFTTT

Comments

Popular posts from this blog

Project SportWagen: Going Stage 2 with APR

    When we last left you, the humble little SportWagen was fresh from the development process with our friends at AWE Tuning, sporting a new downpipe, exhaust and intake, allowing things to breathe a bit easier.  The car sounded great, but there was no getting around the fact that our wagon was still quite, well, slow.   While we realize that nothing we do to the Golf SportWagen at this point will make it a race car, we still felt compelled to do something .  To put it bluntly, we had a fever, and the only cure was more power. Flash forward a few hours, and we found ourselves at Waterfest, staring down APR’s palatial spread and the numerous tuned vehicles surrounding it.  Earlier in the year, APR had hinted to us that their 1.8 TSI files would be quite impressive, and based on what they were able to do with the 2.0 TSI found in the new GTI and our time in their Golf R, we knew it’d be worth the wait.  So with this in mind, we lined our G...

Bugatti Chiron Won’t Get a Roadster Version

The all-new Bugatti Chiron hypercar will not get a convertible version like its Veyron predecessor did. Speaking to Autocar at the London grand opening of the sole Bugatti showroom in the U.K., marketing boss Stefan Brungs confirmed that the French automaker’s latest hypercar will only be sold in coupe format, with “no roadster or convertible” version in the plans. Brungs also said that the company is only planning on selling the allotted 500 Chirons as standard, so faster variants like a Super Sports version also aren’t likely. This is a very different strategy than the Veyron, which has targa top Grand Sport and Super Sports models, as well as a number of special edition models. The Chiron is set to try to break the world record for fastest car and attempt to beat the Veyron’s record of 268 mph. It is believed that the Chiron will be able to hit 288 mph. Powered by an 8.0-liter W16 engine with 1,500 horsepower and 1,106 pound-feet of torque, it shouldn’t ...

Volkswagen Group Records Best Ever First-Half-of-Year Sales

With 5.5 million vehicles in customer hands after the first six months of 2018, the Volkswagen Group is seeing the best performance of its history. Group deliveries increased significantly in all core regions,” said Fred Kappler, head of sales for the Group. “Our core brands recorded strong growth in the first half year.” For the year-to-date, all of Volkswagen’s brands had sales bumps. MAN, SEAT, and Skoda led the sales charge with performances 24%, 17% and 11% better than the previous year. The big sellers, too, had strong sales periods, with Volkswagen Commercial Vehicles, Audi, and Volkswagen sales rising 3.5%, 4.5% and 6.3% respectively. That last figure is particularly good new for the board, since Volkswagen alone sold more than 3 million vehicles in the first half of 2018. As Kappler stated, the numbers are equally good when you break sales down by region. Brazil and Russia were the most improved markets (22% and 20%, respectively), while strong sales in Europe and China (u...